Introduction

The loss of tooth structure, from disease or biomechanical stress, requires the replacement of tooth structure through dental restoration techniques. This may occur either directly or indirectly. Extensive tooth restorations typically require indirect restorations: [1] Indirect dental restorations benefit from excellent form, function, aesthetics, and strength, however, the retention of indirect restorations can prove problematic.[2] This is primarily due to variable technique-sensitive chemical bond of the restorative material with the tooth.[2] The type of restoration used largely depends on the magnitude of tooth destruction and dictates unique preparation design characteristics.[3]

With the increasing demand in esthetics, use of ceramics has become more prevalent in restorative dentistry.[4] E.max, a ceramic and metal-free restorative material, has been demonstrated to be an extremely strong, dependable restoration with ideal esthetics.[5] It is a highly bio-compatible glass ceramic composed of lithium disilicate.[6] E.max is also among the most durable dental materials to date.[6] Previous studies have concluded that e.max poses no health risk to dental patients and has little potential to cause irritation or sensitizing reactions, when compared to composite or gold restorations.[7]

Although the primary retention of an indirect restoration is based on bond strength, secondary elements can be introduced to further increase surface area and retentive strength, such as pins.[8] Traditionally, retentive pins were employed to offer significant retention to direct restorations when minimal tooth structure remained.[8] Effective utilization of pins required proper application of biomechanical principles in each clinical case.[9] Adequate dentin, to support the pin, remains an important factor in the evaluation of the clinical success of retentive restorations.[5] The type of pin used also determines the success rate of the restoration. Among the two pin types, titanium retentive pins have been found to be highly biocompatible with minimal corrosive activity.[10]

Due to the sensitivity of indirect restoration bonding and resultant retention, an investigation on whether the use of titanium retentive pins would offer an increase in fracture resistance seemed fitting. If there was a significant increase in fracture resistance between the restorative material and the tooth, pin-reinforced e.max press restorations could justify further investigation. In addition, with advances in 3D intraoral imaging and CAD/CAM, a digital workflow would provide a simple and predictable clinical alternative.

Materials and methods

Human extracted molar teeth were used for this investigation. They were sorted and randomized to totally of 20 extracted molar teeth were used. The control group contained ten molar teeth. Each tooth was prepared for a four surface onlay restoration which did not incorporate pins. The test group included ten molar teeth. Each tooth was prepared for a four surface onlay restoration which incorporated pins. Each four surface e.max onlay restoration preparation had either the buccal or lingual wall remaining intact (Fig. 1) following standard pin-retained amalgam guidelines.[11] Titanium pins with a diameter of 0.6 mm were used (Stabifix, Fairfax Dental Inc.). Two pins were placed in each tooth at the appropriate line angles, pin 1 was placed on the mesial side whereas pin 2 was placed on the distal side of each molar tooth (Fig. 2). Pins were inserted to a 2 mm depth. The top mm was sheared off and smoothed.[12] Pin length was slightly variable among the teeth. Radiographs were taken in a buccal-lingual and mesiodistal fashion to verify pin placement (Fig. 3). All tooth specimens were packaged and sealed in a moisture controlled container and shipped to a dental laboratory (Dentsply) for restoration fabrication with e.max press (Ips e.max Press, Ivoclar Vivadent). Specimens were returned in the same manner along with the e.max onlay restorations (Figs. 4 & 5). Tooth specimens and restorations were prepared and bonded (Fig. 6) using Multilink adhesive cementation system (Multilink Autowax, Ivoclar Vivadent) following manufacturing recommendations.[13] Cement flash was removed and the restorations were polished following standard Schulich Dentistry protocols. The prepared tooth was fixed with ortho resin (Fig. 7) (acrylic resin, DENTIFY Caulk) in the stabilizing ring (Fig. 8). A universal loading machine (Instron laboratory testing unit ITW) was utilized to apply an axial load to the tooth until the tooth fractured (Fig. 9). The machine applied pressure at a maximum crosshead speed of 0.5 mm/min. Tooth fracture was assessed visually and measured in Newtons for all the teeth in the control and test groups (Fig. 10).

Results

The force (Newtons) required to cause fracture of either the restoration or tooth, or a combination of the two, was extremely variable (Table 1). The test group suggested greater variability among the values and the highest fracture resistance value. There was no significant difference

<table>
<thead>
<tr>
<th>Control Group (N)</th>
<th>Test Group (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3016</td>
<td>2679</td>
</tr>
<tr>
<td>2277</td>
<td>2436</td>
</tr>
<tr>
<td>2212</td>
<td>1605</td>
</tr>
<tr>
<td>3079</td>
<td>2606</td>
</tr>
<tr>
<td>2510</td>
<td>1716</td>
</tr>
<tr>
<td>2258</td>
<td>2927</td>
</tr>
<tr>
<td>3120</td>
<td>3060</td>
</tr>
<tr>
<td>2396</td>
<td>1575</td>
</tr>
<tr>
<td>2859</td>
<td>3118</td>
</tr>
<tr>
<td>2222</td>
<td>2385</td>
</tr>
</tbody>
</table>

Table 1: Fracture resistance values for samples (Newtons)
fracture resistance. The results indicated that the root test group exhibited greater variability. This could be due to pin location, pin length, differences in pin angulations or variations in the width of the orifice preparation margin. The highest fracture resistance value was a pin-retained e.max onlay, which could be related to the increased surface area and subsequent bond strength [14]. Pin-retained e.max onlays had a tendency to fracture in a very controlled manner, with much of the tooth restoration complex remaining intact. Conversely, non-pin-retained e.max onlays typically fractured in such a violent manner that the tooth restoration complex was destroyed.

Due to the degree of variability, further laboratory testing would be warranted with a larger sample size. A clinical investigation, highlighting the procedural aspects, would also be an ideal extension of the research. Further studies should isolate variables and establish a greater sample size. With advances in technology, the digital workflow of records, design and output could be easily implemented for pin-retained restorations. It has been previously shown that digital impressions have the ability to capture all aspects of a pin-augmented substructures [Fig. 12] [40]. It has also been demonstrated that CAD/CAM technology has the precision and accuracy to mill [Fig. 13] the subsequent pin-bored restoration from an e.max CAD block [50]. A digital approach seems to represent a simple and predictable chairside alternative for the clinician.

Conclusions

This study explored combining retentive titanium pins with indirect e.max press onlay restorations in extracted human molars. Teeth were then subjected to axial loading in a universal loading machine. There was no statistical difference in fracture resistance between the two groups. However, the highest fracture resistance was displayed from a pin-retained e.max onlay. This may be related to the increased surface area and subsequent bond strength. Observationally, pin-retained e.max onlays fractured in a manner that seemed more controlled than non-pin-retained e.max onlays.

Digital dentistry could simplify this potential alternative by providing the clinician with the tools required to acquire the digital impression, design and fabricate the final restoration. Although pin-retained was termed for the investigative restorations, perhaps pin-reinforced would seem more logical. Further investigations are required to substantiate the research and identify whether this approach may be considered as a clinical alternative.

Conflict of interest

Research was supported by the Schulich Dentistry Summer Research Project and by Research Driven Inc. Les Kalman is the co-owner and President of Research Driven Inc.

Acknowledgements

The author thanks Victoria Yu, a dental summer student, who assisted with aspects of the methodology, and Dr. Amin Rizkalla, BSc, Milng, PhD, Associate Professor & Chair of the Division of Biomaterials Science, who facilitated the testing.

Editorial note: A complete list of references is available from the publisher.

This article was published in CAD/CAM international magazine of digital dentistry. No.04/2016.

Dr. Les Kalman, DDS
Assistant Professor, Department of Restorative Dentistry, Schulich School of Medicine and Dentistry, and Chair of Dental Outreach Community Service Program, Western University, London, Ontario, Canada.

Yasmin Joseph, BSc
Undergraduate Student, Faculty of Science, Western University, London, Ontario, Canada.

Dr. Kleber K. T. Carvalho
a private practice limited to Endodontics. Dr. Carvalho has authored one book in Dentistry, specialization and Master's degree in Endodontics at Universidade Metodista de São Paulo – Brazil. He is the coordinator of a specialization course at Funorte – Santo André, São Paulo, Brazil. Dr. Carvalho has authored one book in Endodontics and 8 book chapters. He runs a private practice limited to Endodontics.

XP-endo® Shaper - 3D-Shaping - Clinical Cases

By FKG

The XP-endo® Shaper is the latest instrument of the FKG’s range of 3D instruments. It is the epitome of what incremental innovation can create for modern dentistry. It features the combination of a dual technology and an unique expertise.

Firstly, the exclusive MaxWire® al- lows the instrument to achieve optimal flexibility and an extreme resistance to cyclic fatigue. It allows the XP-endo® Shaper to shape and to progress inside the root canal with agility, whilst expanding and contracting its shape, adapting itself to the specific morphology of each canal.

In addition, the Booster Tip, thanks to its six cutting edges, guides the instrument easily towards the apical terminus and enables to start the shaping at an ISO diameter of 3, then gradually to increase its working scope to reach an ISO diameter 9.

CLINICAL CASE n°1

Pulpotomy on a first upper right molar. A 60-year-old caucasian female patient presented a symptomatic pul- ptosis on tooth 16.

After a glide path of 15/02 with a hand file, the canals were shaped us- ing a Gutta Percha 01/04. Finally, the canals were obturated with To- talFill® RC Putex™ and TotalFill® RC Sealer™.

The XP-endo® Shaper is the latest instrument of the FKG’s range of 3D instruments. It is the epitome of what incremental innovation can create for modern dentistry. It features the combination of a dual technology and an unique expertise.

Firstly, the exclusive MaxWire® all- lows the instrument to achieve optimal flexibility and an extreme resistance to cyclic fatigue. It allows the XP-endo® Shaper to shape and to progress inside the root canal with agility, whilst expanding and contracting its shape, adapting itself to the specific morphology of each canal.

In addition, the Booster Tip, thanks to its six cutting edges, guides the instrument easily towards the apical terminus and enables to start the shaping at an ISO diameter of 3, then gradually to increase its working scope to reach an ISO diameter 9.

CLINICAL CASE n°1

Pulpotomy on a first upper right molar. A 60-year-old caucasian female patient presented a symptomatic pulptosis on tooth 16.

After a glide path of 15/02 with a hand file, the canals were shaped using a Gutta Percha 01/04. Finally, the canals were obturated with TotalFill® RC Putex™ and TotalFill® RC Sealer™.

Conclusions

This study explored combining re- tentive titanium pins with indirect e.max press onlay restorations in extracted human molars. Teeth were then subjected to axial loading in a universal loading machine. There was no statistical difference in fracture resistance between the two groups. However, the highest fracture resistance was displayed from a pin-retained e.max onlay. This may be related to the increased surface area and subsequent bond strength. Observationally, pin-retained e.max onlays fractured in a manner that seemed more controlled than non-pin-retained e.max onlays.

Digital dentistry could simplify this potential alternative by providing the clinician with the tools required to acquire the digital impression, design and fabricate the final restoration. Although pin-retained was termed for the investigative restorations, perhaps pin-reinforced would seem more logical. Further investigations are required to substantiate the research and identify whether this approach may be considered as a clinical alternative.

Conflict of interest

Research was supported by the Schulich Dentistry Summer Research Project and by Research Driven Inc. Les Kalman is the co-owner and President of Research Driven Inc.

Acknowledgements

The author thanks Victoria Yu, a dental summer student, who assisted with aspects of the methodology, and Dr. Amin Rizkalla, BSc, Milng, PhD, Associate Professor & Chair of the Division of Biomaterials Science, who facilitated the testing.

Editorial note: A complete list of references is available from the publisher.

This article was published in CAD/CAM international magazine of digital dentistry. No.04/2016.

Dr. Les Kalman, DDS
Assistant Professor, Department of Restorative Dentistry, Schulich School of Medicine and Dentistry, and Chair of Dental Outreach Community Service Program, Western University, London, Ontario, Canada.

Yasmin Joseph, BSc
Undergraduate Student, Faculty of Science, Western University, London, Ontario, Canada.

Dr. Kleber K. T. Carvalho
a private practice limited to Endodontics. Dr. Carvalho has authored one book in Dentistry, specialization and Master’s degree in Endodontics at Universidade Metodista de São Paulo – Brazil. He is the coordinator of a specialization course at Funorte – Santo André, São Paulo, Brazil. Dr. Carvalho has authored one book in Endodontics and 8 book chapters. He runs a private practice limited to Endodontics.

XP-endo® Shaper - 3D-Shaping - Clinical Cases

By FKG

Technological advances and manufac- turing processes are allowing the practitioner the ability to get closer to ideal root canal therapy. The ‘per- fect’ file should touch all the walls of the canal without changing its shape while still allowing room for disin- fecting irrigation solutions. The aim is to achieve optimal disinfection in a minimally invasive fashion. Thus both aims of root canal therapy can be achieved; a healthy surrounding periodontium and a strong root with maximal resistance to fracture. FKG aims to develop advanced endodontic instruments that provide dentists with the best shaping ability, even in curved or oval canals.

The XP-endo® Shaper is the latest instrument of the FKG’s range of 3D instruments. It is the epitome of what incremental innovation can create for modern dentistry. It features the combination of a dual technology and a unique expertise.

Firstly, the exclusive MaxWire® al- lows the instrument to achieve optimal flexibility and an extreme resistance to cyclic fatigue. It allows the XP-endo® Shaper to shape and to progress inside the root canal with agility, whilst expanding and contracting its shape, adapting itself to the specific morphology of each canal.

In addition, the Booster Tip, thanks to its six cutting edges, guides the instrument easily toward the apical terminus and enables to start the shaping at an ISO diameter of 3, then gradually to increase its working scope to reach an ISO diameter 9.

CLINICAL CASE n°1

Pulpotomy on a first upper right molar. A 60-year-old caucasian female patient presented a symptomatic pulptosis on tooth 16.

After a glide path of 15/02 with a hand file, the canals were shaped using a Gutta Percha 01/04. Finally, the canals were obturated with TotalFill® RC Putex™ and TotalFill® RC Sealer™.

Conclusions

This study explored combining re- tentive titanium pins with indirect e.max press onlay restorations in extracted human molars. Teeth were then subjected to axial loading in a universal loading machine. There was no statistical difference in fracture resistance between the two groups. However, the highest fracture resistance was displayed from a pin-retained e.max onlay. This may be related to the increased surface area and subsequent bond strength. Observationally, pin-retained e.max onlays fractured in a manner that seemed more controlled than non-pin-retained e.max onlays.

Digital dentistry could simplify this potential alternative by providing the clinician with the tools required to acquire the digital impression, design and fabricate the final restoration. Although pin-retained was termed for the investigative restorations, perhaps pin-reinforced would seem more logical. Further investigations are required to substantiate the research and identify whether this approach may be considered as a clinical alternative.

Conflict of interest

Research was supported by the Schu- lich Dentistry Summer Research Pro- ject and by Research Driven Inc. Les Kalman is the co-owner and Presi- dent of Research Driven Inc.

Acknowledgements

The author thanks Victoria Yu, a den- tal summer student, who assisted with aspects of the methodology, and Dr. Amin Rizkalla, BSc, Milng, PhD, Associate Professor & Chair of the Division of Biomaterials Science, who facilitated the testing.

Editorial note: A complete list of refer- ences is available from the publisher.

This article was published in CAD/CAM international magazine of digital dentistry. No.04/2016.

Dr. Les Kalman, DDS
Assistant Professor, Department of Restorative Dentistry, Schulich School of Medicine and Dentistry, and Chair of Dental Outreach Community Service Program, Western University, London, Ontario, Canada.

Yasmin Joseph, BSc
Undergraduate Student, Faculty of Sci- ence, Western University, London, Ontario, Canada.

Dr. Kleber K. T. Carvalho
a private practice limited to Endodontics. Dr. Carvalho has authored one book in Dentistry, specialization and Master’s degree in Endodontics at Universidade Metodista de São Paulo – Brazil. He is the coordinator of a specialization course at Funorte – Santo André, São Paulo, Brazil. Dr. Carvalho has authored one book in Endodontics and 8 book chapters. He runs a private practice limited to Endodontics.
CLINICAL CASE n°2
Treatment (ex-vivo) of a first upper right premolar. Endodontic treatment of a first upper right premolar (Tooth 14), extracted for orthodontic reasons. The aim of this procedure was to assess the ability of XP-endo® Shaper to instrument irregularities of the canal system and prepare it for the filling.

After preparing a glide path to 20/.02, the canals were shaped thanks to the XP-endo® Shaper to the desired final size 30/.04. The XP-endo® Shaper could get to canal irregularities, and maintained the original shape of the canal.

Finally, the canals were obturated with TotalFill® BC Points™ and TotalFill® BC Sealer™.

CLINICAL CASE n°3
A 42 years-old caucasian male presented a symptomatic pulpitis. After preparing a glide path to 20/.02, the mesial canals were shaped thanks to the XP-endo® Shaper to the final size 30/.04. The distal canals initially larger than the mesial canals were also shaped with the XP-endo® Shaper creating a space to adapt a size 40/04 TotalFill® BC points™.

After shaping, disinfection was completed with the XP-endo® Finisher for all canals. The obturation was carried out with TotalFill® BC points™ and TotalFill® BC sealer™.

These technical advantages combined with high-speed continuous rotation and minimum torque, minimise the stresses exerted onto the canal walls and prevent debris compaction in the dentinal tubules, they also promote the creation of micro-debris which can be easily eliminated thanks to the turbulence generated by the instrument. It provides the patient with a non-aggressive, conservative treatment.

This instrument is an amazing new single file system from FKG. It allows faster treatment in the majority of the root canals. With its enhanced flexibility compared to instruments of the same size and its high cyclic fatigue resistance, shaping becomes a simple, safe and quick process.

This high-tech instrument helps the dentists to perform their procedures with reproducible success.
Now, everyone in your dental team can **SHOOT**!

Ultra-Light

SIMPLE Compact

Accurate

Intuitive

SHOFU Smart Digital **EyeSpecial**

- The only one true dental camera
- 8 automated pre-set dental modes
- Intuitive one-touch operation with built-in anti-shake
- Large LCD touchscreen with on-screen guide
- Fast auto-focusing capability and excellent depth of field
- Water and chemical resistance
- Registration and imprinting of patient ID
- Uncomplicated photo management system

For more information, simply contact us or your nearest **SHOFU** dealer.